

Alison Jones Great Ormond Street Hospital London

History

- 1937 Wiskott Aldrich syndrome described
- 1950 'Swiss-type' agammaglobulinemia
 - Candidiasis
 - LymphopeniaRapidly fatal
- 1963 X-linked form identified
- 1972 ADA deficiency recognised
- 1975 first WHO meeting on primary immunodeficiency
 - renamed Severe Combined Immunodeficiency: 'SCID'

World Immunology Day 2012 Athens

Molecular basis of PID

- Early 1980's ADA gene identified
- Early 1990's genes for defined syndromes identified
 X-SCID, XLA, XHM, WAS, XLP
- More than 50% SCID cases still genetically undefined
- Increasing recognition of 'undefined combined' immunodeficiencies
- Since then >150 PID genes identified

World Immunology Day 2012 Athens

Severe combined immunodeficiency (SCID)

- 'Bubble' babies
- Profound deficiency of cellmediated and humoral immunity
- Rare approximately 1:50,000 live births
- Unlikely to survive more than 1-2 years without corrective therapy
- Outlook good with early recognition and treatment

Pneumocystis Jirovecii pneumonia Absent thymus

World Immunology Day 2012 Athens

SCID

- · A clinical syndrome
- Many molecular defects defined
 - Clinical presentations similar
 - Precise genetic diagnosis now possible in most cases
 - Family history NOT always positive
 - Significant numbers remain molecularly undefined
 - Consanguinity increases the likelihood of autosomal recessive disorder
- Immunological phenotype can predict likely molecular defect

World Immunology Day 2012 Athens

- Infection
- Failure to thriveSkin rashes
- Diarrhoea

SCID - presentation

- Low absolute lymphocyte count
 often goes un-noticed
- Absent thymic shadow
- Family history of early/unexplained infant deaths
- Usually within first six months May be later – depends on severity of defect
 - 'Leaky' forms now recognised may present up to several years of age
 - Immunological phenotype may be incomplete

World Immunology Day 2012 Athens

Infections in SCID

- Common infections cause severe, recurrent or persistent illness
 - Respiratory viruses
 - RSV
 - Parainfluenza
 - Influenza
 - Adenovirus
 Cytomegalovirus
 - Gastrointestinal eg Rotavirus, Norovirus
 - Skin Candida
 - 'Opportunistic' infections
 - Pneumocystis jirovecii
 - Fungal esp candida and aspergillus
 - Mycobacterial BCG

World Immunology Day 2012 Athens

Early diagnosis can be life saving

Severe Combined Immunodeficiency UK 1979-2008

- Index Cases
 - 30% died before BMT
 - 30% died during BMT
- 40% Survival
- Siblings
 - 2% died before BMT
 - 6% died during BMT
- 92% Survival

Brown et al. Blood 2011

Prenatal/Pre-implantation diagnosis available when molecular diagnosis known

World Immunology Day 201:

Diagnosis of SCID

Lymphopenia almost always
 T cells: low/absent
 B cells: low or normal
 Natural killer (NK)cells low or normal

• T cell proliferation in

response to mitogens: absent/poor
Immunoglobulin levels: low (usually)
Specific antibody production: absent

Immunological phenotype may predict molecular defect

World Immunology Day 2012

Clinical case

Progressive immune deficiency

- Proband born 1994
- Well first year of life
- Autoimmune haemolytic anaemia, neutropenia, thrombocytopenia
- Progressive fall in Igs, lymphopenia and loss Well for 5y on Ig replacement of T cell function
- Massive splenomegaly
- Poor growth and quality of life
- BMT unsuccessful died
- Molecular defect unknown

- Sibling born Jan 2006
- Cord blood screening
- · Low B cells, very low Igs
- Lymphopenia (0.7); normal T %
- Acute severe haemolytic anemia
- MSD BMT Jan 2012 currently

Normal DNA irradiation sensitivity Compound heterozygous mutation in Artemis gene (deletion and point mutation)

World Immunology Day 2012 Athens

Attenuated Artemis defects

- 13 patients (10 kindreds 4 consanguinous)
- Ages: infancy 27y
- Commonest manifestation infection
- Autoimmune cytopenias (5)
- Lymphoma (3) all EBV associated
- Inflammatory bowel disease (1)
- Outcomes
 - 3 died from disease-related complications
 - 3 died from transplant-related complications
 - 6 successfully transplanted

World Immunology Day 2012 Athens

CID in non-paediatric patients?

- · Case reports of ADA deficiency diagnosed in adulthood
- Common variable immunodeficiency
 - Subset of patients have severe dysregulatory complications

 - GI disease Granulmoatous disease
 - Lymphoproliferative disease
 - Autoimmunity
 - Some severe enough to consider stem cell transplantation
- · Some may have highly attenuated forms of 'SCID'

Late onset combined immunodeficiency - 'LOCID'

- · France DEFI study
- 28/313 (8.9%) CVID patients
 - Opportunistic infection
 - CD4+ T cells <200 x 109/L
- LOCID group
 - 29% consanguinous (vs 8%)
 - Higher incidence of
 - Splenomegaly (64% vs 31%)
 - Granulomatous disease (43% vs 10%) · Gastro-intestinal disease (75% vs 42%)
 - Lymphoma (29% vs 4%)
 - More infections
- · Molecular defects not yet defined

History of BMT

- 1968 First bone marrow transplants HLA identical sibling transplants

 - Wiskott Aldrich syndrome
- Successful BMT only using identical sibling donors until 1980's
 1978 Development of T cell depletion techniques
 1982 Haplo-identical BMT from parents

- 1980-early 1990's

 BMT for SCID, Omenn's syndrome, (Wiskott-Aldrich syndrome)

 Unconditioned matched sibling donor BMT for SCID successful if early diagnosis
 - Conditioned haplo-identical BMT: survival <40% Non-SCID outcomes poor
- - Unrelated donor panels and umbilical cord blood banks
 Unrelated donor BMT

 - Improvements in tissue-typing techniques

 - Progress in BMT technology and anti-viral drugs
 Widening range of indications European and North Amer databases recognition of poor outlook in many disorders

 Late 1990's- 2000's Gene therapy

World Immunology Day 2012 Athens

Types of transplant

- Matched sibling
- · Matched family
- Unrelated
- Haploidentical

Possibility of pre-implantation diagnosis and embryo selection for molecularly defined disorders

- Bone marrow
- · Cord blood
- Peripheral blood stem cells

World Immunology Day 2012 Athens

SCT - what is involved?

- Immunosuppressive/myeloablative chemotherapy in most
- Prolonged period of pancytopenia highly susceptible to infection and bleeding
- · Infusion of cells
- Prolonged period of isolation in hospital
- Risks
 - Infection
 - Bleeding

 - Rejection Veno-occlusive disease
- Immune reconstitution can take several years

World Immunology Day 2012 Athens

